Marble's core: libMarble

The popular Marble Virtual Globe is more than an
application: Marble's whole feature set is offered by a
mature software library called libMarble which is
based on Nokia's Qt framework.

So if you're a Qt developer then you can easily add a
Marble globe or other Marble capabilities into your
own Qt application. Even better: since libMarble is
highly modular and plugin-based you can tailor its
feature set up to your needs.

And as Marble is a crossplatform library your
application can run on all desktop and mobile
platforms supported by Qt.

libMarble — Qt meets geo-mapping

With libMarble we provide a natural extension of the
Qt library for creating and working with maps. The
scope covers the full range of map related topics:

« a plugin-based Location API

« an intuitive Maps API that conveniently supports
the most frequent use cases

« Geodetic Storage and Tool APIs modelled after the
OGC Standard KML

All APls of libMarble adhere to the well-known Qt
design concepts and Qt conventions. For geographic
aspects of the APl we've chosen the popular open
standard KML (as used in Google Earth/Maps) as a
reference.

So any developer with Qt and KML knowledge will
feel right at home using libMarble and can
immediately get productive.

MARBLE

A Qt Geo-Mapping Library

PeeRERRRRE

Website: http://www.marble-globe.org

License: GNU LGPL 2+ (Open Source)

Client Version: 1.2, July 27, 2011

Library Version: 0.12.0

OS: Linux, Windows, Mac OS X, MeeGo
Qt/ C++

Visualizing your data

There are many solutions for integrating your map
data into libMarble:

+ Maps can be specified using XML in a simple text
editor. So usually there is only little or no C++ code
at all required to add or change map data.

» You can develop Qt/C++ plugins for libMarble to
visualize data, webservices or your current location.
In fact most Marble features are based on plugins, so
you can use the existing code as an example.

« Image tiles are another popular way to provide
map data. Marble supports all popular tile layout
schemes (such as those used by OpenStreetMap,
Google Maps and Ovi Maps).

In libMarble everything is handled in geodetic
coordinates (latitude and longitude), so you don't need
to worry about the projection used in the end - no
matter whether it's the Globe, Equirectangular or
Mercator.

Also Marble supports Open Standards which helps
to import your data.

(5.) MARBLE

A Qt Geo-Mapping Library

License

libMarble is distributed under the LGPL license.
Within the terms of the license the LGPL allows for
commercial and Open Source development. See the
LGPL license for details and limitations.

Marble and its library come with a selection of free
map data that is covered by Terms of Use which are
similar in spirit to the LGPL license.

Documentation

Some basic documentation is available on our website.
Additionally there are in-depth tutorials available at:

http://techbase.kde.org/Projects/Marble

Community & Support

Marble and its library are developed by a big growing
community of volunteers. If you need help or if you
want to contribute there are several ways to get in
touch with our Marble Team:

« Send an e-mail to marble-devel @kde.org

« Or join us on IRC (irc.freenode.org, #marble)

« Or follow us on Facebook
(http://www.facebook.com/marbleglobe) or
Twitter (http://www.twitter.com/marbleglobe)

In addition to our community support there is
commercial support available (e.g. via Qt consulting
companies such as basysKom or C-xx).

http://www.marble-globe.org

Tutorial — Hello Marble!

The API of the Marble library allows for a very easy
integration of a map widget into your application.

Let's prove that with a tiny Hello world-like example: Qt
beginners might want to have a look at the Qt Widgets Tutorial
to learn more about the details of the code.

For a start we just create a QApplication object and a
MarbleWidget object which serves as a window. By default the
MarbleWidget uses the Atlas map theme. However for our first
example we choose to display streets. So we set the maptheme
id to OpenStreetMap. Then we call QWidget::show() to show
the map widget and we call QApplication::exec() to start the
application's event loop. That's all!

#include <QtGui/QApplication>
#include <marble/MarbleWidget.h>

using namespace Marble;

int main(int argc, char** argv)

{
QApplication app(argc,argv);

// Create a Marble QWidget without a parent
MarbleWidget *mapWidget = new MarbleWidget();

// Load the OpenStreetMap map
mapWidget->setMapThemeld(
"‘earth/openstreetmap/openstreetmap.dgml**

);

mapWidget->show();
return app.exec();

}

Copy and paste the code above into a text editor (or Qt
Creator). Then save it as my_marble.cpp and compile it by
entering the folling command on the command line:

g++ -1 /usr/include/qt4/ -o my _marble
my_marble.cpp -Imarblewidget -1QtGui

If things go fine, execute ./my_marble and you end up with a
fully usable OpenStreetMap application:

X & my marble

part of the

KDE Family

